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unique-mass, unique-spin relativistic wave equations 

P M Mathewst, B VijayalakshmiS and M SivakumarS 
t Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, 
USA 
8 Department of Theoretical Physics, University of Madras, Madras 600025, India 
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Abstract. Considering the infinite class of relativistic wave equations wherein the transfor- 
mation property of the wavefunction involves up to four (unspecified) inequivalent irreduc- 
ible representations (IIRS) of the Lorentz group occurring with arbitrary multiplicities, we 
have investigated the general question as to what combinations of IIRS would be admissible 
and with what multiplicities, if it were required that the equations have solutions only for 
a single (unspecified) spin and mass and be inequivalent to any simpler equation. It is 
found that the possibilities are quite limited. Our main results are presented here. 

The discovery of inconsistencies in practically all the known theories of higher spin 
particles interacting with external fields (see, for example, Johnson and Sudarshan 
1961, Vel0 and Zwanziger 1969, Wightman 1978, Mathews et a1 1980) and more 
recently, certain developments in supergravity (Deser and Witten 1981, Siege1 1981, 
Duff and van Nieuwenhuizen 1980) have given an impetus to the search for new 
relativistic wave equations with a richer structure than the familiar ones (Capri 1969, 
1972, Glass 1971, Fisk and Tait 1973, Hurley and Sudarshan 1975, Khalil 1977, 
Cox 1982a, b). The extra structure is introduced by permitting more complex transfor- 
mation properties for the particle field +allowing the Lorentz group representation 

S(A) - &, a,.D")(A) (1) 
according to which t,b transforms to contain repeated irreducible representations D"' 
(i.e. have multiplicity a,>1 for some IRS D',)), or to contain spins exceeding the 
desired physical spin s which the wave equation 

-iP"a,t,b +mt,b = 0 (2) 
is to single out. However, the construction of such equations, starting with various 
specific choices of S(A), have resulted in much fruitless effort: most of the new 
equations have turned out to be equivalent to simpler known ones, though looking 
more complicated through the presence of additional field components having no 
essential role. (We refer to such components as barnacles, following Hurley and 
Sudarshan 1975.) 

This situation (besides the intrinsic interest of the problem) makes it pertinent and 
timely to raise the following general question. What combinations of IRS 7 and 
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multiplicities a, (out of the infinite variety that faces one at the outset) will support 
field equations which 

(i) are assured to be inequivalent to simpler equations, begin free of barnacles, and 
(ii) yield a unique spin and mass, with no degeneracy? 
The conditions arising from (i) on the matrices p" have been determined by Khalil 

(1978) while those resulting from (ii) have long been known (Harish-Chandra 1947, 
Gel'fand et a1 1963); nevertheless, it is only now that a question of such generality 
as the above one is being tackled. We have succeeded in determining to a large extent 
the implications of these conditions for cases where up to four (unspecified) IRS are 
allowed with arbitrary multiplicities in S(A). We consider that this constitutes a 
significant advance in the decades-old field of relativistic wave equations. Our main 
results are summarised in this letter. 

Lorentz invariance of equation (2) implies that matrix elements of p" in the 
canonical basis (labelled by the IR label T and the quantum numbers i, A of 5' and 
Jz) factorise as 

( ~ ' a  ' j ' A  ' Ip " I ~ a j h  ) = c t,:'g "(T'T) ( j f A  ; j A  ) (3) 

where the second factor is a Lorentz group CG coefficient and cb:h" is a reduced 
matrix element of arbitrary value. (The label a identifies a particular one of the 
a, IRS D',).) All the c's associated with a particular pair of IRS (T ' ,  T )  form an a,' X a, 
block C(7'7) and these blocks (for all the T ' ,  T occurring in S(A)) together make up 
the 'skeleton matrix' C associated with p". Of special interest is Po, which has a 
block diagonal form. Each block, associated with a particular spin j ,  is a direct product 
p o ( j , @ l ( j )  of the spin block po(j) with a unit matrix of dimension (2j+1);  and 
itself is obtainable from C by multiplying each C"'" by g?',) = g " " " ( j j ; j j )  and 
deleting all those blocks for which either T' or T does not contain spin j .  The 
mathematical conditions into which the requirements (i) and (ii) translate can now be 
stated as follows. 

(i) The two submatrices of C, one consisting of the a,  rows, and the other, of the 
a, columns associated with T ,  must be of rank a, (for every 7). 

(ii) The spin block pertaining to the unique physical spin s must have just 
one pair of non-zero eigenvalues, + 1 and - 1. Apart from these, all eigenvalues of 
all must be zero. This structure implies but is not wholly implied by the 
Harish-Chandra condition that the minimal equation of P o  must have the form 

(p0yc2 = ( P O ) ' .  (4) 

By exploiting certain basic but little-used aspects of matrix theory, we have been 
able to determine the implications of the above requirements on the skeleton matrix 
C and to obtain thus a number of useful results of a rather general nature regarding 
the admissibility of various combinations of IRS and multiplicities. The following are 
among the most interesting of these. 

(1) With the number of inequivalent irreducible representations (IIRS) restricted 
to two, our requirements admit just two possibilities (Mathews et a1 1981): 

S(A)-(s,O)@(s-$,$) andS(A)-(s ,O)@(s+~,$) .  

(2) With three IIRS, T~ = (m, n )  and 7 2 , 7 3  belonging to the set (m + $ E ,  n + $ E ' ) ,  

E ,  E '  being independently + 1 or - 1 : (a) Irrespective of the D(T), multiplicities related 
by al = a' + a3 are not admissible. This result rules out the spin-0 equation based on 
S(A)  - 2($, $)@ (1, 1 ) 0 ( 0 ,  0), proposed by Cox (1982b). In fact, one sees on inspection 
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that the equation is barnacled and equivalent to the Kemmer equation (Kemmer 
1939). With parity invariance as an additional requirement, there are two possible 
types of representations to be considered-one with T I  self-conjugate ( 7 1  = + I )  and 7 2  

and T~ mutually conjugate ( T ~  = i3), and the other with all IRS self-conjugate. In the 
former class, no S(A) in which any ai # 1 is consistent with (i) and (ii); the only allowed 
case is the Kemmer equation for spin 1 .  In the latter class, the only equation possible 
with a1 = a2 is the Hagen-Singh spin-1 equation involving (4, $), ( 1 , l )  and (0,O) with 
all ai = 1. But with a1 = a2+ 1 ( = a, say) a whole set of equations based on S(A) - 
a($, $)@(a - 1 ) ( 1 ,  l)@a(O, 0 )  is available (a = 2 , 3 . .  .). The degree (1  + 2 )  of equation 
(4) in this case is (2a + 1 )  if s is chosen to be 0 and (2a + 3) for s = 1. Equations of 
this class have not been considered in the literature before. Equations involving 
representations with a1 - a2 L 2 could exist but with the minimal degree of P o  not 
less than 7. 

(3) With four IIRS and parity invariance required in addition to (i) and (ii), no 
combination of linked IRS (ml,  n l ) ,  (mz, nz), (m3, n3), (m4, n4) is admissible other than 
the following. 

(a), al(& $)@a2(l ,  1)@a3[(1,O)&t,d, l ) ] ,  with either a1 = a2 = a3 = 1 (S  = 0 only) 
or a2<a1, a36a1 and al<az+a3 (s = O  or 1 ) .  

(b), al($, $)Oaz(O, 0)8a3[(1,0)@(0, l ) ]  with a2, a3<alS(a~+ag),  (s = O  or 1) .  
One of the new spin-0 equations proposed by Cox belongs to this class (a1 = 2,  az = 
a3 = 1 ) .  

(c), al(O,O)Oa2($, & h ~ 3 ( 1 ,  1)+a4($,$) with alGazS(al+a3) and either a4< 
a3 < (a2 +a4),  ( s  = 0 , l  or 2) or a3 = a4 = 1 ( s  = 2 only). 

(d), al[( l ,  $)@($, l)]@aZ[($, O)O(O,i)]. In thisclass,equationsfors =$withal = 1 
can be found with any a2, the minimal degree of P o  being (az+3). The cases a2 = 1 
and 2 yield the Rarita-Schwinger (1941) and Glass (1971) equations respectively. 
Cases with a1 > 1 have not so far been amenable to complete classification. Also 
spin-$ equations exist which must have a1 = a2- 1 if the minimal degree of P o  is 
restricted to 4. The Khalil (1977) equation is the simplest member of this class, with 
a1 = 1 ,  a2 = 2.  (The Santhanam-Tekumalla (1974) equation, which has a1 # a2- 1 ,  is 
barnacled.) Others with minimal degree exceeding 4 are not ruled out. For example, 
with a = 1 and arbitrary a2, the minimal degree is (a2 + 2) .  

The above results, for the first time, give general guidelines as to the regimes of 
multiplicities and IRS wherein one may look for really new equations, for example in 
attempting to escape the inconsistencies which beset the familiar equations. It may 
be noted that for spins > 2, one has to allow for more than 4 IIRS. Some of the results 
can be generalised to such cases too. The proofs of our results, which are rather 
involved though essentially elementary, will be presented in a separate detailed paper. 

PMM has pleasure in acknowledging the hospitality of Professor Irwin Shapiro and 
the Department of Physics, MIT, where 'this work was completed. BV is grateful to 
the CSIR and MS to the University of Madras for the award of Fellowships during 
the tenure of which this work was done. 
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